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The time development of two-dimensional fluid motion induced by a lim sink in 
a rectangular, density stratified reservoir with a free surface is given. It is shown 
that the initiation of such a sink gives birth to a spectrum of internal expanding 
shear fronts with a progressively decreasing vertical wavelength. These fronts 
move out from the sink and travel towards the far wall, where they are reflected. 
This process ceases once the front with a vertical wavelength equal to the steady 
withdrawal-layer thickness has reached the end wall. The fronts so introduced 
continue to move back and forth, expanding to standing waves if the viscosity of 
the fluid is small enough. The evolution and nature of the withdrawal layer are 
shown to depend critically on the relative magnitude of the convective inertia 
and viscous forces, the number of reflexions from the rear wall and the Prandtl 
number. 

1. Introduction 
Recently there has been a renewed interest in the problem of two-dimensional 

selective withdrawal from a stratified reservoir. The papers by Pa0 & Kao (1974) 
and Imberger & Fandry (1975) have considerably advanced our understanding of 
both the mechanisms of the withdrawal-layer establishment and the effect of a 
vertical upstream boundary. These papers were both confined to viscously 
dominated withdrawal-layer formation, but even then they offered two, appar- 
ently different, models for the same process. The present study investigates 
withdrawal flow for the whole possible parameter range. The solutions found 
offer a reconciliation of the above two apparently different models. 

Imberger (1972) assumed that in reservoirs with small depth-to-length ratios 
the upstream boundary is unimportant and may be replaced by a uniform flow 
supplying the fluid drained off at the sink. Using such a horizontal-duct model, 
Pao & Kao (1  974) were able to show that a steady state was established by shear 
fronts travelling out from the sink against the induced uniform upstream 
velocity. These fronts were identical to those investigated by McEwan & Baines 
(1974), who showed that the speed of the nth wave was given by HN/nm, where 
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2H was the depth of the reservoir, N the Brunt-Vaisala frequency and n the 
mode number of the wave. Furthermore,.as these modes propagated down the 
reservoir the flow collapsed into a withdrawal-layer structure until it  had reached 
the asymptotic state described by Imberger (1972) .  The characteristic time 
necessary to establish a pseudo-steady state for a reservoir of length L was 
estimated to be O(L/ZHN),  i.e. the time required for the f i s t  mode toreach the 
far end of the reservoir. I n  a companion paper, Kao, Pa0 & Wei (1974) experi- 
mentally supported their theoretical findings and presented conclusive evidence 
for the existence of such fronts, their speed of propagation and their rate of 
expansion. However, the experimental investigations were not carried out long 
enough to establish conclusively the time required for a steady state to be 
achieved over the whole length of their tank. 

Imberger & Fandry (1975) noticed that a rear wall blocking the flow had a 
severe effect on the flow, especially once the first mode had reached the rear wall 
and a withdrawal layer had begun to form. Once this had occurred, the fluid 
below the partially formed layer had essentially stagnated and the fluid above the 
layer moved with a uniform vertical velocity, just sufficient to balance the fluid 
withdrawn. Thus they postulated that once a layer had begun to form the vertical 
extent of the fluid above and below the layer was unimportant. This hypothesis 
allowed the problem to  be modelled by flow in a vertical duct. Their analysis 
explained the formation of a withdrawal layer, but the motion was composed of a 
continuous spectrum and not a discrete spectrum of simple progressive shear 
fronts. Their work was confined to fluids with a Pr number O( I )  and it showed 
that the time taken for a withdrawal layer of thickness O(Ra-BL) to form was 
O ( R d N - l ) ,  provided F R d  < 1 .  The Rayleigh number Ra was defmed by 
N 2 L 4 / v ~  and the Froude number F was given by Q/NL2,  where Q was 
the discharge, L the duct width, N the Brunt-Vaisala frequency and v and K 

the kinematic viscosity and molecular diffusivity of the stratifying species 
respectively. 

I n  the present investigation it is shown that the sudden initiation of a line sink 
in a finite reservoir with a free surface leads to the following sequence of events. 
Immediately after the sink is turned on a nearly horizontal potential flow is 
established in which the horizontal velocity decreases linearly to zero at the end 
of the tank. This flow is progressively modified by shear fronts which are con- 
tinually attenuated by diffusion of vorticity and mass and modified by the con- 
vection induced by the previous waves, which may or may not have already been 
reflected from the end walls. The nature of this evohtion depends critically on the 
value of the parameter R = FGr), where Gr = N2L4/v2. I f  R is smaller than one, 
the waves will travel out until they have decayed. Once a wave has decayed, no 
waves of smaller wavelength can propagate past this point of decay and a with- 
drawal-layer structure remains, the thickness of which is exactly equal to the 
wavelength of the smallest wave able to propagate to that station. It will be 
shown that this leads to a layer thickness O(LGr-9) at the  end of the tank and the 
time to reach the end wall is O(N-lGr9). For very large Prandtl numbers, where 
Pr = V/K,  it will be shown in $ 5  that such a layer is unsteady and subsequently 
collapse occurs. 
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Time scale Comments 

Plow establishment 

Time scale for internal waves. 
Time taken for the 1st shsar wave to reach end. 
Time taken for 1st mode to expand to a standing wave. 

Approach to steady shte  

Initial withdrawal-layer formation. Layer collapses owing 
to convection of in situ g d i e n t .  s = o(Lc~-+) .  
Pseudo-steady-state withdrawal as described by 8 3. 
S = O(LGr-QPr-4). 
Further collapse due to self-induced convection. 

Initial withdrawal formation. S = O(LGr-4). 
Self-induced convection accelerates collapse. 
6 = O(LGr-&R*). 
Steady state, as described by Imberger (1972), is reached; 
viscosity dominates. L/zc > 1. 

Initial withdrawal formation. S = O(LGr-4). 
Self-induced convection accelerates collapse. 

Steady state, as described by Imberger (1972), is reached; 
inertia dominates. LIZ, < 1. 

s = o(Lc~-+R%). 

Inertia dominates and solution behaves as described in 8 3. 
6 = O(LP4). 

Large times 

Time taken for all wave motion to decay. 
Time taken for tank to empty. 

TABLE 1. The hierachy of time scales. 8 is the characteristic scale of the withdrawal-layer 
thickness. N-1GrQ is the time taken for a viscous-buoyancy layer to form, or the time taken 
for waves of wavelength smaller than LGr-& to decay, or the time taken for mode n = 
AGrQ to reachtheendof the tank. N-'Ch.QR is the time taken for the inertialzone to be set up. 
N-13'-* is the time needed for steady state to be achieved, or the time for wave n. = AP-4 
to reach the end of the tank, or the time for fluid to fall through a distance LP4. 

On the other hand, if R is larger than one, then convection dominates and 
waves will propagate out until the induced flow just balances their phase velo- 
city. This occurs in time O(N-lF-*), which is the time required for a wave of 
wavelength equal to the withdrawal-layer thickness O(LP4) to reach the end 
wall. Smaller waves are swept back out of the sink. In  both cases this process may 
require many traverses by the leading shear front between the sink and the end 
wall and in this time it may expand to the full length of the tank to form a 
standing wave system before it is dissipated by viscosity or channelled into 
the withdrawal layer by convection. The hierachy of time scales is shown in 
table 1, where h is the aspect ratio HIL. 
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2. Evolution of shear fronts into a withdrawal layer 
Consider a rectangular container filled with a linearly stratified fluid which is 

being withdrawn through a line sink situated at the origin of the co-ordinate axes 
X ,  2. Figure 1 shows the geometric configuration and the boundary conditions to 
be applied. The fluid is assumed to be both viscous and diffusive, but in order to 
avoid unnecessary complications the fluid is allowed to slip along any solid wall. 
In this way an understanding can be gained of the sink-initiated motion without 
the difficulty of wall boundary-layer formation. Provided the discharge & is 
smaller than La$, the free-surface conditions, for times T small compared with 
HL/Q, will be given on 2 = H by 

= l-(XlL) - 41 &, (1) 

and 8 = So +So H d S Z  + (QT/L)  dg/dZ, (2) 

where So is the initial density at  the level of the sink and B is the equilibrium 
density with no motion, assumed to be a linear function of 2. 
In their experimental study, Kao, Pax, & Wei (1974) found that immediately 

following the initiation of the sink a series of shear fronts propagated upstream 
against a nearly uniform horizontal potential flow. The time scale associated with 
these propagating fronts is N-l and the vertical scale is H .  McEwan & Baines 
(1974) in their study of analogous shear fronts have shown that the width of the 
primary shear front is O(H(NT)&) ,  and hence combining this with the above time 
scale yields a horizontal length scale H .  The stream function + will be O(Q), 
leading to vertical displacements O(Q/HN),  which in turn means that the density 
perturbations must be O(HA-2Fd~/d2) ,  where h = HL-l.  

FIGURE 1. The geometry of the reotangdar two-dimensional reservoir fdled with linearly 
stratified fluid. The bottom and side walk am rigid, but slippery. The free surfaoe is rigid 
and slippery, but descending at rate Q/L, where Q is the strength of the sink and L is the 
length of the reservoir. The total depth is 2H. 
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With these estimates the correct non-dimensional variables to introduce for 
the small-time initial flow regime are given by 

x = XH-l, z = ZH-', $ = YQ-l, s = S(dS/dZ)-1H-'h2F-l, t = T N .  

In terms of these variables the Boussinesq approximation to the equations of 
motion is 

V2flrt + A-2F($, V211;, - flrz V2flr,) = sx + (Pr/A4Ra)*(V2flr,, + V2$xz), (3) 

(4) 

In the limit P-+O and Ra-tao these equations can be reduced to the linear, 
inviscid, non-diffusive equation for the stream function $, i.e. 

st+ $x + P 2 P (  - flrx s, + $, sx) = (Prh*Ra)-*(s,+ sm). 

V%t+ $xx = 0, (5) 

subject to the following boundary conditions for t > 0 :  

(i) $ = Ax-+ on z = 1, (ii) flr = 4 on z = 1, (iii) $- = -8sgnz on x = 0, 
(6a-c) 

(iv) $ = 4 on Ax = 1, (v) (8/8t)V2flr = 0, V2$ = 0 at t = 0. (6d-f) 

Although equation (5) is identical to that solved by Pao & Kao (1974) and Mc- 
Ewan & Baines (1974), the finite horizontal dimension leads to a different solu- 
tion, for at least a certain range of time. 

By taking the Laplace transforms of (5) and (6) it is easily shown that the 
solution for the transformed stream function $ is given by 

m - - 
$(x, z, s) = 4s-l + &s-l(hz - 1) (1 + z )  + C Z, (x, 8 )  sin l a m ,  (7) 

where Zn (x, s) = (nm)-'sinh [a@- l/h)]/sinh (a/h), (8) 

and a2 = n2n2s2/(s2 + 1). (9) 

n-1 

Asymptotic inversion of (7) for very small times leads to 

OD 1 sinhnr(x- l/h) $(x,z,t) - i + i ( h x - l ) ( l + z ) +  x - sinnm, (10) 
n-1n7r sinh (nn/h) 

which is just the potential flow solution showing a nearly linear decrease in 
horizontal velocity towards the end wall. 

For times 0 < t < n/h, the inversion of (7) can be performed using the appro- 
priate asymptotic representation of (8} ,  which is 

(11) 
- 
a, N (nns)-lexp [ -nnnxs(s2+ I)-*]. 

As shown by Pao & Kao (1974) and McEwan & Baines (1974) this solution repre- 
sents a discrete spectrum of shear fronts, propagating away from the sink up- 
stream into the tank with constant non-dimensional speed l/nn, where n is the 
modal number of the nth front. Hence we can conclude that the finite-channel 
and infinite-horizontal-duct models display similar behaviour for times before 
the primary front is first reflected from the end wall. For times larger than n/h3, 
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which is the time taken for the primary front to  expand to the length of the tank, 
a better representation is given by a sum of standing waves: 

@(x, z, t )  = &[Ax + (Ax - 1) sgn x ]  H(t )  
w m  + 2 r 2  x C A,, sin krAx cos (w,k t )  sin nrx, (12) 

n=l k = l  

where W,k = (hk/n) ( 1  f h2k2/n2)*, A,, = [hnk (1 + h2k2/n2)]-1. 

It is perhaps interesting to note that the infinite series in n is a slowly conver- 
gent one, but can be made to converge arbitrarily fast by an appropriate change in 
the boundary conditions at x = 0. If the boundary condition on @ at x = 0 is 
replaced by 

then the amplitudes A,, will be reduced by a factor 

$(O,  z, t )  = &{ - erf (z/a)/erf ( l / a ) )  exp ( - b/4 t ) ,  

O (exp [- )n2;rr2a2- (ikAb)*(nZ+ k2A2)-'~). 

(13) 

(14) 

Thus starting the sink slowly decreases the amplitude of the waves with a large 
horizontal wavenumber component (a much wider front will be observed ini- 
tially) and introducing a distributed sink rather than a point sink reduces the 
amplitude of the waves with a large vertical wavenumber (and thus fewer shear 
wave modes will be observed). The limiting condition is achieved when b is 
O(1) and a is O(A);  then essentially no shear fronts or standing waves will be 
observed and the motion will be quasi-steady at all times and equal to the initial 
potential flow. 

It is thus clearly seen that for long times the problem must be resealed, as the 
solution (12) is non-uniform in both vertical distance and time. Two limiting 
cases may be distinguished depending on the magnitude of the parameter R. If 
R is small then the finalwithdrawal layer will be governed by a viscous-buoyancy 
force balance and if R is large then the balance will be between inertia and buoy- 
ancy. 

3. The viscous-buoyancy withdrawal layer: R << 1, Pr = O(1) 

As already stated in the introduction a withdrawal-layer structure will have 
formed when a wave is first dissipated at the end of the tank. For times of this 
magnitude the correct non-dimensional variables are 

x' = XL-1, z' = ZL-lGr*, t' = TNGr-*, llf' = YQ-1, 
s' = S(ds/dZ)-lL-lR-lGr*. 

In  terms of  these new variables, but dropping the primes and eliminating the 
density, (3) and (4) may be written tori-ect to O(RPrQ) and O(Cr-Q) as 

Pr-lllfzzzzzz - ( 1 + Pr)lPr lkzzzzt + l l f z z t t  + llfxx 

+ Gr-Wxxtt +Pr-l@zzzBxx - (Pr + l ) /Pr  @xxz,t) = 0. (15) 

By retaining the term Gr-*llfxdt, (15) contains all the terms of (5) and, as in 
Imberger & Fandry (19x9, a uniformly valid solution for all time can be gen- 
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FIGURE 2. Streamlines for withdrawal from a stratified reservoir with R < I from (17). 
Parameters are Pr = 1, h = 0.01, Gr = 4 x  IOl5. (a) At non-dimensional time t‘ = 0.6. 
Note the first shear wave at  2’ = 0.8. (71) At non-dimensional time t’ = 1.2. The first wave 
has reflected to near x’ = 0.4; the second shear wave is visible near x‘ = 0.7. (c)  The 
steady solution (essentially valid for t’ > 2). This is independent of Pr. 
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erated. However, as will become apparent below, it is more convenient to retain 
all the terms O(Gr-*) even though some are negligibly small at all times. It will 
be assumed here that terms O(RPr8) are small. A uniformly valid solution may 
thus be obtained by solving (15) subject to the following boundary conditions 
for t 0. On 

O < x <  1 and ( i )z=/3:  $=x-&, (ii)z=-/3: $=&.  (16u,b) 

(iii) x = 0:  $ = - 4  sgn z, (iv) x = 1: 4 = $, (16c, d )  On 

where /3 = A&*. The solution is given by 

-/3 < 2 < /3 and 

w w  

+ 2 (2/kn7r2c) (1 - b/d)  e-*ut{cos [(d - &z2)Jt] 

+ &u(d - &u2)-* sin [ (d  - &2)*t]} sin (nnz/D) sin krx, 
n = l  k=l 

(1 7) 

where y = b%/[ 1 + Gr-*(n7r//3)4]* (18) 

b = Pr-1(nn//3)4, d = b -t k2P2/n2cPr. (19) 

and a = (( 1 + Pr)/Pr)  (n~//3)2,  c = 1 + Gr-*k2D2/n2, 

Once again the solution consists of a steady solution plus a spectrum of standing 
waves whose amplitudes decay with time while their frequencies are weakly 
modulated owing to viscous and diffusive effects. The steady-state component 
of the above solution yields a withdrawal-layer thickness O(LRu-8). The time 
required for this to appear is O(N-lBu*Pr*) and the above solution is valid pro- 
vided R < P r 4 .  Figures 2(u), ( b )  and (c) show a typical withdrawal-layer 
development. 

4. The convective-buoyancy withdrawal layer: R > 1 

Let us now consider the case where convective inertia forces dominate for 
large times and the collapse is towards an inertial withdrawal layer of dimen- 
sional thickness O(F4L) which extends over the whole length of the reservoir. This 
occurs whenever R > 1, but F*L is smaller than the depth of the reservoir. In  
other words gravitational effects must be sufficient to yield a withdrawal layer 
and not be dominated completely by inertial forces as this would then only lead to 
a simple potential flow. There is no species diffusion and a quasi-steady state 
cannot be achieved until the fluid particles have fallen a distance equivalent to 
the layer thickness, that is in time T = O(N-lF-4). The corresponding density 
perturbation in S will be O((&/dZ) LF)),  so that the appropriate scaling to 
introduce becomes 

X” = XL-1, 2’’ = ZL-lF-i, t” = TNF&, 8’’ = S(&/dZ)-’L-1F-4. 

Introducing these new variables into (3) and (4) and dropping the primes 

(20) 

(21) 

yields 

and 

$22t + $2 $zBx - $x $mz - ax = R-v-2222, 

s, -k $x - $x s, + $z sx = R-1Pr-b22. 
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Some consequences of the existence of a rear wall are now obvious. In  the horizon- 
tal-duct model the blocking effect due to the stratification made itself felt by the 
presence of a Froude number in the equations, which if too small yielded solutions 
with slip lines at the boundary of the withdrawal layer (see Kao 1970). This 
difficulty has been completely eliminated here because the behaviour specified 
for large 2 is independent of the Froude number and is also valid for all time. 

Once again the solutions of (20) and (21) will exhibit standing waves, but now- 
their nonlinear interaction must be taken into account as well as viscous damping. 
However, the solution will still exhibit a discontinuity. This is most easily seen by 
considering the dividing streamline separating the fluid moving from above into 
the sink and the fluid below, which is essentially stagnant. As seen above, in times 
O(L2P*/&), a density difference will have formed across this dividing streamline 
O((dg/dZ) PiL) and this difference increases with time causing the dividing 
streamline to possess smaller curvatures than the streamlines in the flowing layer 
itself. In  the limit of large time i t  will become horizontal. However, this argument 
clearly shows that no steady-state solution is possible even in the absence of 
standing waves because the dividing streamline must attach itself to the rear wall. 
A stagnation point or even a tangential attachment, as discussed by Kao (1970), 
is not possible since both would lead to unsteady internal flows. Thus there 
must be a continual adjustment of the separation streamline, which in a real 
fluid would be masked by a viscous diffusive sublayer of thickness O(Gr-iL) 
across it. 

An approximation to the outer parts of the layer, which may be expected to be 
immune to these minor adjustments and thus steady, may be obtained by using 
what is essentially an Oseen approximation of the flow variables and by replacing 
the dividing streamline by a zero vertical flux condition at x = 0. This approxi- 
mation technique is only valid for long times and at the edge of the withdrawal 
layer, so that no attempt is made to solve the linear equation containing the un- 
steady terms. This question is taken up in detail in Q 7, where numerical solutions 
are discussed. Thus let 

8 = - t+s ' .  

Neglecting squared terms leads to the equation for the steady flow 

#EZZE - #XX = O.  (24) 

Two more boundary conditions are required to find the solution of (24). These 
will be assumed to  be that the pressure and density are independent of x a t  the 
free surface z = a = A F d ,  

#SE = rb,,, = O.  

With these conditions the solution of (24) may be written as 

(25) 
2 sinh (nm)#(a - 2) + sin (nm)* (a - 2) 

sin kx. ' = zl G sinh (nm)* a + sin (nn)*a 

32 FLM 78 
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5. Flow development for fluids with a large Pr number 
The above solutions are valid for Praridtl numbers O( 1) and cover the case of 

water stratified by temperature differences. Further clarification is required when 
Pr a 1 such as is the case for most laboratory experiments which use salt as a 
stratifying agent. When R > 1, (20) and (21) remain unaltered, indicating that 
the solution given by (26) remains valid. However, when R < 1, Pr 9 1 and 
Gr 9 1, (15) reduces to the simple form 

@z& - @ z m t  + @xx = 0. (26) 

This equation describes the evolution of shear waves into a withdrawal-layer 
structure a t  t = O(1). For t > I, this equation admits an approximate self-similar 
solution of the form 

indicating that the layer experiences a further collapse with time, and it is not 
difficult to  show that in the limit t-tm the sohtion to (26), satisfying the appro- 
priate boundary conditions, becomes $ = &x + $(x - 1) sgnz. Substitution of 
(27) into (15) shows that the self-similar solution is a valid approximation until 
either species convection or diffusion has grown to the same magnitude as the 
convection of the background density gradient. 

$ = @(zt ) /x t ) ,  (27) 

If R < Pr-8 then diffusion is the first to grow to O( I)  and after times 

O( N-lGriPr*) 

this term must be accounted for. T t  is not difficult to show t h a t  for this case the 
equations are identical to the pseudo-steady state described in Q 3. Associated 
with this pseudo-steady flow is a density perturbation 

(28) 'p = ( - @x + @ z x Y *  

This variation leads to the gradual formation, at thelevel of the sink, of a horizontal 
step structure in the density field. The density jumps across this layer will be 
O((dg/dZ) QTL-1) and the thickness will be O(Ra*-QL), where Ra* is the Ray- 
leigh number based on the gradient across this layer. For times 

O(N-lGr~Pr-~R-l)  

this perturbation will become of the same order as the background stratification 
and Ra* will become appreciably different from Ra. I f  one notes that R+ 0 as 
dg/dZ+ a, it is not difficult to show that for such large times s, = 0 to first order; 
to  second order the equations are the same as the above. This leads to a with- 
drawal-layer structure which is essentially the same as that described by (17), 
but which slowly evolves in time yielding a withdrawal-layer thickness 

8 = O(LRa-iPr-iR-Bt-*), where t = T/N-lRaiPrt. 

On the other hand if P r 3  < R < 1 the collapse is first modified by the convec- 
tion terms which accelerate the collapse process. Steady state is essentially 
analogous to the solution given by Imberger (1972) and is dominated by viscous 
effects if P r f  < R < Pr-* and inertial effects if Pr-f < R < I. It was shown by 
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Imberger (1972) that for a fluid with Pr = 0 ( 1 )  the inertial zone extends out a 
distance O(R2). For large Prandtl number this distance must be modified to 
R#Pr% where species convection begins and R% where inertia forces begin. This 
explains why the numerical solution for large Prandtl number found by Imberger 
(1972) did not approach the linear solution until x/x, was quite large. No analytic 
solution could be found for these complex phenomena and the authors resorted to 
a numerical solution of the complete equations to obtain further insight. A 
summary of all the time and length scales possible is given in table 1. 

6. Numerical solution 
An Eulerian finite-difference method is not appropriate for the above flows 

where large density differences develop (see Thompson 1976). Lagrangian grids 
are also unsuitable since these would become too distorted within the withdrawal- 
layer structure. The particle-in-cell method of Harlow & Welch (1965) and the 
cloud-in-cell method of Birdsall & Fuss (1969) seem to combine the best features 
of both Eulerian and Lagrangian approaches, so i t  was decided to adapt these 
methods for a stratified, incompressible fluid. 

If the [is the vorticity andp the total density, then (3) and (4) may be written 

The fields 5 and p are described by a cloud of n particles each labelled with x k ,  

Z,, s k ,  pk and a parameter c k )  called ink. This last parameter is a convenient label 
for tracing the particles’ motion. Given the field 6, one may obtain the velocities 
from the solution of the equation 

and the boundary conditions (6). This velocity is then used to move the particles 
to their new positions. The labels of eachparticle are adjustedusing (29) and (30). 
These are linear operations, so that an Eulerian grid is the most suitable. 

The essential part of the particle-in-cell method is the connexion between the 
Lagrangian particles and the Eulerian fields. This is done by interpolation, the 
price for handling both advection and diffusion correctly. The Eulerian field for 
vorticity is called Zij and X is regarded as being a t  a fixed position ((i - 1) AX,  
( j  - I)  AZ) and the density Rij at ((i - +)AX, ( j  - 4)A.Z). It is easy to find which 
grid point a given particle is closest to: 

V2Y = 6, (31) 

but there is no way to find which particles are near to a given grid point, other 
than by searching the entire list. [This searching is really what makes Lagrangian 
methods impractical.] Therefore, the program must proceed through the list of 
particles, finding the closest points to each, adding the sums for 2, R, and the 
number of particles at each grid point. In  order to simulate correctly internal 
gravity waves which have the property that small displacements cause small, 
continuous changes, particles will not be thought of as being point-like, but 

32-2 
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rather as small volumes requiring the use of bilinear interpolation. This is equiva- 
lent to regarding each particle as being of size A X  x AZ, and weighting the alloca- 
tion of & to Zir (and Pk to Rir) by the overlap of area with the A X  x AZ cell 
centred at Zi, (or Rir). Thus, as a particle moves up into a cell, its density Pk will 
have a continuously increasing influence on Rir. This approach is similar to the 
‘cIouds’ used by Birdsall & Fuss (1 969). After the new R and 2 fieIds are found by 
this averaging, finite differences are used to compute DR/Dt and DZ/Dt; these 
are linearly interpolated back to each particle (again running through the lists). 
The stream function + is found by relaxing Vz$ = 2, and the velocities U and V 
are found by finite differencing. The particles are moved by the linearly inter- 
polated velocities, and now the new R and 2 can be found. 

7. Results from numerical experiments 
Evolution to a withdrawal layer 

Figure 3 shows the time development of the flow in a square tank for the particular 
case in which Pr = 7.07 and R = 0.043, so that R c Pr-Q and the evolution will 
be towards a layer of thickness O(LGr-*) in a time O(N-lCr*), with secondary 
collapse to a layer O(LRa-*) in times O(N-lBa*Pd). It is seen from figure 3 
that the potential flow, which exists soon after the initiation of the sink, is re- 
placed by a flow consisting of a series of shear waves travelling backwards and 
forwards across the tank which after a short time expand to become standing 
waves. Inspection of the vertical velocity indicates that the first and second 
modes have become standing waves when TNA3 = 0.6 and TNA3 = 1.2 respec- 
tively. The non-dimensional time for complete decay is equal to O(Gr*h2), which 
has the value of 134.52, so that the first mode will oscillate long after the with- 
drawallayer has formed. Thisisillustrated in figure 3 ( d ) ,  which shows that the final 
withdrawal layer has essentially already formed for t’ = 1.1, but as seen from the 
velocity plots of figure 5(a)  the upper fluid continues to oscillate. The computa- 
tions were terminated at t’ = 1-44 because of computing costs. Figure 4 is a plot 
of withdrawal-layer half-thickness (where u/uo = 0.5) at the centre of the box 
against non-dimensional time t’. From this i t  is seen t h a t  the withdrawal-layer 
thickness rapidly thins as Gr-A(NT)-Q while the shear waves progressively 
arrive, until t‘ = 1 when the thinning slows and the secondary collapse commen- 
ces. In  the present case this should be completed when t’ = 3.67 when the dimen- 
sionless thickness will be of order Pr-4 = 0-7. The secondary collapse is more 
apparent for larger Pr numbers and figure 4 also shows data from Pr = 16.54, 
915 and 3.5: x lo5 and co. The last three examples illustrate the secondary collapse 
extremely well, but computational time was too great for the secondary layer to 
form. The intermediate example of a Pr = 16.54 shows clearly the secondary 
layer forming and the time to reach steady state is very close to the scaling esti- 
mate. All the values of the relevant dimensionless groups are shown in the figure 
caption. 

The horizontal velocity profiles shown in figure 5(6) show the approach to 
steady state for the case R = 4.3, Pr = 7.07 and figure 6 depicts the streamlines 
at t” = 2.2, clearly showing the approach to the Oseen approximation derived in 
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Q 3 (dashed line). The oscillations are more severe in this case and take somewhat 
longer to decay. As a final example both Y and K were set to zero. The solution 
showed the formation of a steady withdrawal layer at t" M 0.6, but sloshing 
continued to the end of the run at t" = 1.6, indicating that with no viscosity 
present the larger internal waves will remain indefinitely. This sloshing became 
less severe when h was decreased to 0.20. 

To check the dependence on the aspect ratio and to allow a comparison with 
the solutions derived in the previous sections, we ran h = 0.1 for R = 1.77 and 

FIUURES 3 ( a )  and ( b ) .  For legend see p. 502. 
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FIGURE 3. Streamlines for withdrawal from a thermally stratified reservoir with R c 1, 
from the numerical algorithm. Parameters are F = 8 x Ur = 1-56 x 108, Pr = 7.045, 
R = 0-043,h = 0.5. (a) t’ = 0.0. (a) t‘ = 0.216. (c) t’ = 0.647. (a) t‘ = 1.078. 

Pr = 7.046. Comparison of the theory with the present case and the above 
square-box examples showed that the solution within the layer became inde- 
pendent of h after t” M 0.08; before this time smaller aspect ratios exhibited a 
rather more radial type of flow near the origin. The wave motion, or rather the 
number of waves present, when the wave with the layer wavenumber has reached 
the end wall, i.e. t” = I, depends of course critically on A. The larger the value of A 
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10.0 

0.1 1 .o 10.0 

~ ~ e - 4  

FIGURE 4. Withdrawal-layer thickness, at X / L  = 0.5, versus time. The layer thickness 6 
is defined as the distance from 2 = 0 to the point where the velocity has deoreased to half 
the maximum value. The straight line has a slope - &. 

steady- 
state Character- 
forma- istic layer 
tion thickness 

Symbol P & R PI. N-l&+ L&-+ Regime 
Y 8 . 0 ~  1 . 6 ~  lo8 4 . 3 ~  7.07 3.7 7 . 2 ~  10-1 a 
o 8 . 0 ~  lo4 3 .2x  lo8 1 .2x  lo4 1.61 x lo1 6.5 6-3x 10-1 a 
* 8.0 x 1-2 x lo6 8.5 x 9.15 x loa 9.4 x lo1 3.2 x 10-1 b 
0 8 . 0 ~  3 - 2 ~  loa 1 . 8 ~  lo-' 3 . 5 0 ~  108 4 . 9 ~  lo8 1.1 b 
A 8 * O X  1 . 6 ~ 1 0 s  4*3X CO a3 0 c 
V 1.1 x 10-4 1.1 x 1010 2-4 x 10-1 8.96 x loa 1.7 x lo1 4.9 x 10-1 c 

the more modes will traverse the tank before the layer has formed. Comparison 
of the number of waves present at t" = 1 was always in accordance with theory 
(2h/nF* for R > 1 or SA/.rrGrr-Q for R < R-8). 

Egect of a variable stratijfication 

Most previous investigators, with the exception of Wood & Lai (1972), have dealt 
with the constant-N fluid. However, it  is trivial to change the initial stratification 
in the numerical model. As an illustration, the following example, representative 
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FICIUGE 5. Velocity profiles at X / L  = 0.5 fcr various times. (a) Parameters as in figure 3 
(R < 1). -, t' = 0.16; ---, t' = 0.48; - , t' = 0-96; ---, t' = 1.44. (b )  Parameters 
as in figure 6 ( R  < 1). - , t" = 0.22; -*-, t" = 0.44; -, t" = 0.88; ---, t" =12*2. 

of some reservoirs, was chosen: a well-mixed layer on the top, a fossil homogeneous 
layer on the bottom, and a thermocline between. This run was like previous 
examples in a square box with R based on the central value of N equal to 4.30. 
The upper and lower quarter of the tank was Wed with water at N equal to 
zero. With the outlet in the thermocline, everything was much as before and a 
layer of thickness LF4 formed. With the outlet moved to a height of 0.1 m, just 
below the thermocline, events were more interesting. Wood t Lai (1972) analysed 
a similar situation of an outlet below an interface between two constant densities. 
They found that, if the density difference waa not too much, the upper fluid 
would be drawn down near the outlet. Here, the density difference starts at  zero, 
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FIGURE 6. Streamlines for withdrawal from a thermally stratified reservoir with R > 1, 
from the numeriaal algorithm and Owen approximation. Parameters are P = 8 x 10-8, 
& = 1.56 x 108, Pr = 7.045, R = 4.30, h = 0.5, t“ = 2.203; - , numerical value; 
--- , Oseen approximation. 

so we can expect part of the thermocline (‘upper layer’) to be drawn down, but 
expect the further parts, with greater density difference and distance, to be 
affected less. 

After the start, the flow remained close to potential flow longer than previous 
runs. However, at a stage in the drawing down of the thermocline, some ‘reso- 
nance’ was excited, for a wave with a much sharper shear front than previously 
observed ran down the tank and set up a much more vigorous fimdamental- 
mode standing wave than previously seen. Despite this, the streamlines, when 
averaged over several wave periods, were virtually vertical through the thermo- 
cline, and did their bending w potential flow in the layer. The main effect of the 
outlet was to cause the entire thermocline to drop rather uniformly, without any 
sharp layer forming. Most of the outflow was from the lower layer until after the 
bottom of the thermocline fell below the outlet. After this, the vertical conver- 
gence of the thermocline stratification formed a conventional FJL layer. 

From this example, we can speculate about the effects of general variable 
stratification. The inertial- and viscous-layer thicknesses are proportional to 
Nb and N-9, so if the stratification decrewes, the layer thickness should incream 
(though not a lot). Therefore, if the outlet is in vertically varying N ,  the side with 
lower N should have the wider layer. With roughly equally spaced streamlines, 
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the greater flow can be expected from that side. The streamlines will tend to 
avoid the stronger stratification, causing more convergence in the weaker stratifi- 
cation. 

InJtow 
The inflow of a homogeneous fluid into a stratified tank may now be treated 
similarly. Attention is confined here to cases where the entering fluid has the 
same density as the fluid adjacent to the opening and also where the inflow 
momentum is small (wide openings). Hydraulic jumps and entraining plunging 
flows are beyond the scope of laminar flow theory. 

When the inflow is neutrally buoyant, exact symmetry exists between the 
scaling of the outflow problem and the inflow problem. The chief difference will be 
the occurrence of a slug of nearly homogeneous water emerging from the source. 
The equations of motion, for the initial state, and the boundary conditions are all 
the same as before, except that the sign on the stream function was reversed. For 
outflow, it was found that the behaviour of the withdrawal layer was controlled 
by the ratio of the inertial to viscous forces given by R = PGrS and secondarily by 
the Prandtl number. The following regimes are once again distinguishable. 

(i) R > 1. The flow is dominated by a balance of inertial and buoyancy forces. 
From the discussion for outflow, we expect a layer thickness O(F!iL), and a 
length LTNFj.  Thus the slug will penetrate the length of the tank in an inertial 
set-up time O(N-lP-*). However, the inertial set-up time was the time for outflow 
t o  cause the fluid to fall a distance O(P4L); for flow-in, the fluid will rise the same 
distance in the same time. Furthermore, the flow near the slug may be expected 
to act as though set up even before the ‘set-up time’ for the whole tank, as the slug 
has already forced the stratified fluid apart locally. Manins (1976) also proposed 
this slug thickness and length, using very different reasoning. The equations 
governing the flow are thus identical to those governing the inertial outflow 
problems [(20) and (21)]. 

Figure 7 shows a typical streamline pattern obtained from the numerical 
algorithm for R = 5-95 and Pr = 7.07. A wide entrance was used (6 of the depth) 
to  avoid a high momentum input. The slug can be seen to narrow quickly to the 
width of 2.4FAL and rise gently as it moves out. Both phenomena were also 
observed by Manins (1976) in his physical experiments. Comparison of this 
numerical run and Manins (1976) data is shown in table 2, where C = X/LTNF!i 
is tabulated for the different runs. Good agreement may be noted, but, as already 
pointed out by Manins (1976), the propagation speed is influenced by the shear 
waves leaving the slug region as these travel at approximately the same speed as 
the slug itself. 

(ii) Pr-8 < R < 1. The initiation of the source causes shear waves to move out 
ahead of the slug of entering fluid and set up an inertial layer close to the source 
(up to a distance O(LR3)) and a forward viscous wake of thickness O(LGr-6) 
beyond this. The flow field in front of the slug will become viscous after times 
O(N-1GrQ.E) while the whole forward layer takes O(N-lGrg) to form. As soon as 
the viscous layer has formed it begins to collapse, as described in $ 5 ,  intensifying 
the density gradient in front of the moving slug. This process, however, occurs on 
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FIGURE 7. Inflow into a thermally stratified fluid showing streamlines and slug position. 
Parameters are F = 8 x Gr = 1.56 x lo8, Pr = 7.07, R = 4-30, A = 0.5, t” = 0.894. 

a very much longer time scale than N - W d  and thus the solution in the forward 
wake will be closely approximated by the similarity solution (27). This, therefore, 
leads to a slug displacement 1 = CL@(t’)* causing a compression of the fluid in 
front of the slug which counteracts the previously mentioned collapse. The 
motion is thus self-similar and the TO behaviour may be expected to hold until 
the slug is very close to the end wall. The slug reaches the end wall in times 
O(N-lGrBR*), which is exactly the time required in the outflow problem for 
convection to become appreciable. Hence once again the scaling shows exact 
symmetry with the outflow problem. Thus if R > P r 4  the slug reaches the end 
before the forward wake has collapsed appreciably. All of Maxworthy’s (1972) 
experiments and most of those of Zuluaga-Angel, Darden & Fischer (1972) fall 
into this regime, and table 2 lists the values of C and the exponents of T for the 
non-entraining runs. 

The runs with large entrainment (carried out by both investigators) generally 
move faster than predicted and follow a Tg law. This may be explained by noting 
that the entrainment on either side of the source induces large backflows (see 
also Darden, Imberger & Fischer 1972), which in turn induce forward flow at 
the level of the source. No attempt is made here, however, to describe the jump 
characteristics. 

(iii) R < Pr-%. The initiation of the sink leads to a flow essentially identical to 
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that just described in (ii). However, now the forward wake collapses to a viscous 
diffusive layer in time O(N-lGr*RPr%), before the slug reaches the end. From 
this point on, the readjustment of the wake caused by the entering layer 
occurs on time scales O(N-l&*Pd), which is much smaller than the time re- 
quired for the slug to traverse the tank, which is O(N-lGr*PrAR-l), the time 
required for convection to modify the gradient ! Thus the motion of the slug may 
be described by a pseudo-steady flow being slowly modulated with time. The 
relation 1 = CLRWr*(t')f is thus valid in this regime. 

In  summary, the inflow slug speed may in general be described by 

I' = l /LR) =f(T/N-l&tR; Pr)  = f(t ' /R; Pr). (33) 

For t' < R the flow is inertial and described by 

I' = Ct'lR, (34) 

where, from table 2, C may be taken as 0.44. For R < t' < Prf < R-* viscosity 
dominates the flow and we have 

I' = C(t'/R)t, (35) 

1' = C(t'/R)*Pr*. (36) 

where C = 0-491. For Prt < t' < R-l viscosity and diffusion dominate the flow 
and 

Unfortunately no data exists for this regime and none could be generated num- 
erically owing to the large computing times associated with such slow flows. 

8. Comparison with field and laboratory data 
Consider first laboratory data. The evolution of the shear waves into a with- 

drawal structure for flows where R $ 1 has recently been studied by Kao et al. 
(1975). They considered only the region very near the sink ( X / L  < 0.08) where 
steady state was achieved before reflexions from the end wall returned to the 
field of view. Comparison of their work with figure 6 shows that provided X / L  is 
small and R large the evolution and steady state are independent of the value of R 
and the model chosen. 

Experiments in which Pr-% < R < 1 have recently been carried out by Sil- 
vester (1977) and attention will be concentrated on a salt stratification example 
where R > Pr-+ and where the time scales are separated as much as possible. 
Figure 8 shows a typical streamline pattern obtained by averaging particle 
paths over 10s. The dashed lines are the averagesof numerically computed stream- 
lines for the same set of parameters. The layer collapse is plotted in figure 4 and 
once again the secondary collapse is observed. In  the experiment the longer waves 
did remain, sloshing the fluid back and forth, but their decay was not measured. 
Agreement with the numerical results was good in all cases. 

Comparison with field data is most difficult because reservoirs are generally 
irregular and because the river bed has a gently slope, so that the container is 
shaped more like a triangular vessel than a rectangular tank. However, if L is 
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FIQURE 8. Average streamline pattern for withdrawal from a salt stratified tank. Para- 
meters are P = 1-11 x Gr = 1.06 x 1010, Pr = 697, R = 0.243, h = 0.5, t" = 0.232- 
0.31 1 ; -,experimental value from Silvester (1976) ; - - -, numerically computed values. 

taken as the length from the outlet to where the river bed reaches the same eleva- 
tion as the outlet, very good agreement can be achieved without the necessity of 
postulating large eddy exchange coefficients. Two sets of field data exist. First, 
there are the T.V.A. data where R > 1 and where velocities and withdrawal- 
layer thicknesses were measured directly, and, second, there are the data 
presented by Imberger (unpublished) where velocities are deduced from the 
movement of naturally occurring salt concentrations. Table 3 shows the available 
data with the predictions obtained from the numerical results by matching Pr 
and R. All calculations are based on molecular exchange coefficients with the 
fluid contained in a square box. No attempt was made to compare the wave 
motion with the field data since Kao et al. (1974) have already versed times of 
arrival of the first few shear waves. 

A major discrepancy arose in the induced velocities near the rear of the reser- 
voir where the withdrawal layer impinges on the gently sloping river bed. How- 
ever, if one remembers that, in surface area, a major part of the reservoir may 
lie behind the observation point it is not surprising that the induced velocities 
are much higher than predicted, and a horizontal duct model would be more 
appropriate for predicting theinduced velocities. Inspection of table 3 shows that 
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the predictions are generally excellent and there is little need to invoke turbulent 
mixing on days when the stratification is stable with R > 1 and only nominal 
increases when R < 1. Furthermore, the layer thickness are reasonably inde- 
pendent of the end boundary condition, whether open or closed, since the layer 
is set up from the sink. However, the length L is critical in determining the time 
scales of collapse. The reflexion of waves and the possible evolution into stand- 
ing waves would naturally be complicated by the sloping bottom, but no data 
exists for this at present. 
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